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Abstract

This paper presents algorithms for tracking �approximate� join and self�join sizes in limited
storage� in the presence of insertions and deletions to the data set�s�� Such algorithms detect
changes in join and self�join sizes without an expensive recomputation from the base data� and
without the large space overhead required to maintain such sizes exactly� Query optimizers rely on
fast� high�quality estimates of join sizes in order to select between various join plans� and estimates
of self�join sizes are used to indicate the degree of skew in the data�

For self�joins� we consider two approaches proposed in �Alon� Matias� and Szegedy� The Space
Complexity of Approximating the Frequency Moments� JCSS� vol� ��� 	


� p�	���	��� which we
denote tug�of�war and sample�count� We present fast algorithms for implementing these approaches�
and extensions to handle deletions as well as insertions� We also report on the �rst experimental
study of the two approaches� on a range of synthetic and real�world data sets� Our study shows
that tug�of�war provides more accurate estimates for a given storage limit than sample�count� which
in turn is far more accurate than a standard sampling�based approach� For example� tug�of�war
needed only ���� memory words� depending on the data set� in order to estimate the self�join size
to within a 	�� relative error� on average� this is over  times ��� times� fewer memory words than
needed by sample�count �standard sampling� resp�� to obtain a similar accuracy�

For joins� we propose schemes based on maintaining a small signature of each relation indepen�
dently� such that join sizes can be quickly and accurately estimated between any pair of relations
using only these signatures� We show that taking random samples for join signatures can lead to
inaccurate estimation unless the sample size is quite large� moreover� we show that no other signa�
ture scheme can signi�cantly improve upon sampling without further assumptions� These negative
results are shown to hold even in the presence of sanity bounds� On the other hand� we present
a fast join signature scheme based on tug�of�war signatures that provides guarantees on join size
estimation as a function of the self�join sizes of the joining relations� this scheme can signi�cantly
improve upon the sampling scheme�

�To appear in the Journal of Computer and System Sciences� special issue of selected papers from PODS����
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� Introduction

The degree of skew in a data set describes how far the frequency distribution of the items in the

data set di�er from the uniform distribution� The degree of skew represents important demographic

information about the data� and is used to guide the computation in several applications of modern

database systems� In a relational database� the size of the self�join on an attribute in a relation R

is a well�studied measure of the degree of skew in the attribute values ocurring in R� The self�join

size �also called the second frequency moment� on an attribute in R with value domain D is
P

i�D f�i �

where fi is the frequency of attribute value i in R� Ioannidis and Poosala �IP�	
 have advocated using

self�join sizes for error estimation in the context of estimating query result sizes and access plan costs�

Haas et al �HNSS�	
 advocate its use for selecting between sampling�based algorithms for estimating

the number of distinct attribute values in a relation�

Self�join sizes of relations can also be used to bound the join size of any pair of such relations� as

follows� Consider the join of relations R� and R� on a joining attribute with value domain D� For

i � D� let fi and gi be the frequency of the ith value in R� and R�� respectively� Then the join size�

jR� �� R�j �Pi�D fi � gi� satis�es

Fact ���

jR� �� R�j � SJ�R��  SJ�R��

�
�

where SJ�R�� � jR� �� R�j and SJ�R�� � jR� �� R�j are the self�join sizes on the joining attribute�

Proof� Note that for any real numbers x and y� �x� y�� � �� Thus x� � �xy  y� � �� i�e�� �x� 
y���� � xy� Hence

P
i�D figi �

P
i�D�f

�
i  g�i ��� � �

P
i�D f�i 

P
i�D g�i ��� � �SJ�R��  SJ�R������

For many distributions� such as zip�an and exponential� the self�join size uniquely determines the

parameter of the distribution�

Fact ��� The self�join size for an exponential distribution uniquely determines the parameter of the

distribution�

Proof� Consider an attribute A in a relation R of size n that is distributed exponentially� i�e�� the

ith most popular value for attribute A occurs with frequency n�� � ����i� Then SJ�R� � Pi�n���
����i�� � n��� � ���Pi��

���i � n��� � ������� � �� � n��� � �����  ��� It follows that � �
�n�  SJ�R����n�� SJ�R���
In the statistics literature� the self�join size is referred to as the repeat rate or Gini�s index of

homogeneity needed in order to compute the surprise index of the sequence �see� e�g�� �Goo��
��

The self�join size can be computed in one pass over the data by computing a full histogram of the

data� and then summing the squares of the frequency counts for each attribute value� However� this

requires storage proportional to the number of distinct attribute values� which may be prohibitively

large� Hence� we seek alternative approaches�

Tracking self�join sizes� In this paper� we �rst study algorithms for tracking �approximate� self�

join sizes in limited storage in the presence of insertions and deletions to the database� Alon� Matias�

and Szegedy �AMS��
 proposed two approaches for tracking self�join sizes in the presence of insertions�
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which we denote as sample�count and tug�of�war� and presented asymptotic upper bounds on the space

s��� ��� required to guarantee accuracy within � relative error with con�dence probability � � � �for

� � � and � 	 � 	 ��� For example� they showed that sample�count requires ��
p
t� space to guarantee

a constant factor relative error with con�dence � �
� for any distribution with t distinct values� whereas

tug�of�war requires only O��� memory words� The focus in �AMS��
 was entirely on space bounds and

accuracy� time was not explicitly considered�

In this paper� we extend the results in �AMS��
 in three ways� First� we show how to handle

deletions as well as insertions� Speci�cally� the input to our tracking algorithms is a sequence of

operations� where each operation is either an insertion of a new data item or a deletion of an existing

data item� Second� we show how the sample�count approach can be implemented in constant amortized

time �with high probability� per operation� independent of s� �The tug�of�war approach takesO�s� time

per operation�� Third� we present the �rst experimental study of the two approaches� comparing them

with a standard sampling�based approach� for a dozen real�world and well�studied synthetic data sets�

Our study demonstrates the practical utility of the sample�count and tug�of�war algorithms� by showing

that good estimates are obtained while using only a small fraction of the memory required to maintain

the exact self�join size� The study reveals how the algorithms perform on common distributions�

something not revealed by the worst case analysis provided in �AMS��
� For example� we show

that unless the self�join size is predominantly determined by very few items� the standard sampling

approach is far less accurate than the other two approaches� Moreover� our experiments indicate that

tug�of�war is more accurate than sample�count on a wide variety of data sets� although the accuracy

of sample�count is often close and sometimes better than that of tug�of�war� The relative closeness of

sample�count and tug�of�war contrasts with the large gap in the asymptotic bounds indicated above�

In order to verify that this worst case gap can occur �and is not simply an artifact of the upper

bound analysis�� we construct a pathological data set for which sample�count converges particularly

slowly� in contrast to tug�of�war� Finally� our results show the amount of memory needed to obtain a

given accuracy on common distributions� For example� tug�of�war needed only ���	� memory words�

depending on the data set� in order to estimate the self�join size to within a �	� relative error� and

additional memory words lead quickly to more accurate estimates�

Tracking join sizes� Next� we study algorithms for tracking �approximate� join sizes in limited

storage� Query optimizers rely on fast� highly�accurate join size estimates in order to select between

various join plans� To avoid the quadratic blow�up inherent in maintaining separate data structures

for each possible pair of joining relations� we instead consider schemes based on tracking each relation

independently� The goal is to maintain a small signature of each relation such that join sizes can be

quickly and accurately estimated between any pair of relations using only these signatures�� We show

that taking random samples for join signatures can lead to inaccurate estimation unless the sample

size is quite large� Moreover� we prove a �nontrivial� lower bound that shows that no other signature

scheme can provide signi�cantly better estimation guarantees without further assumptions� These

�Although Alon et al� presented space bounds in terms of the number of bits� we will present space bounds in terms

of the number of ��log n��bit memory words� unless noted otherwise�
�In this paper� we restrict our attention to equality joins between pairs of relations� where each join of interest is on

the same attribute A� In general� if there are equality joins on an attribute A in a relation R� and other equality joins

on an attribute B in R� then separate signatures would be needed for A and B in the scheme we propose�
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negative results are shown to hold even in the presence of a sanity bound B�� Speci�cally� for any B

such that n � B � n�

� � where n is the size of each relation� we show that ��
n�

B � bits are required� Sanity

bounds are popular for estimation algorithms� but tend to be ignored when proving lower bounds� On

the other hand� we present a join signature scheme based on tug�of�war �self�join� signatures that

provides guarantees on join size estimation as a function of the self�join sizes of the joining relations�

this scheme can signi�cantly improve upon the sampling scheme whenever the self�join sizes are smaller

than n
p
B�

The performance and accuracy bounds of the algorithms in this paper are valid for any data

distributions�

Related work� Tracking algorithms and other general data reduction techniques have a long history�

see �BDF���
 for a recent survey� �GM��
 presented a formal framework for evaluating such sublinear

space �synopsis� data structures� and a survey of some of the results in this area� There has been a

�urry of recent work in approximate query answering �e�g�� �VL��� Olk��� BDF���� HHW��� GM���

AGPR��� HH��� VW��� IP��� AGP��� GLR��� CCMN��� CGRS��� MVW��� CDN��� LM��� Gib���

GKS��
�� The work in �HHW��� AGPR��� HH��� IP��� CGRS��
 looked at the problem of providing

approximate answers to queries seeking aggregates �e�g�� count� sum� avg� of attribute values for the

tuples satisfying a predicate that occur in the join of multiple relations� The count aggregate �over

joins but with no other predicates� corresponds to the join size estimation problem considered in this

paper� However� approaches based on histograms �IP��
 or wavelets �CGRS��
 do not provide any

good accuracy guarantees� Online sampling approaches �HHW��� HH��
 do not perform any tracking�

and instead incur large overheads for sampling at estimation time� Finally� previous precomputed

sampling�based approaches are accurate only for foreign�key joins �AGPR��
� and otherwise require

large space for accurate estimation for arbitrary equality joins�

There is an extensive literature on join size estimation �e�g�� �H�OT��� LNS��� HNSS��� LN�	�

GGMS��
�� As in the online sampling approaches discussed above� the techniques presented in these

papers target the traditional approach of estimating the join sizes without the bene�t of precomputed

signatures� and hence also incur large overheads at estimation time� For example� sampling�based

approaches take samples of the databases at the time of estimation� such sampling is slow due to

the random disk accesses involved� In contrast� our tracking approaches do not incur disk accesses

at estimation time� Also� they adapt incrementally to database updates� in contrast to previous

approaches that recompute from scratch at each estimation time� �Some of our analysis holds for

this traditional scenario as well�� Poosala �Poo��
 proposed join size estimation using signatures that

are the Compressed histogram of each relation� �Such histograms can be maintained incrementally

using the algorithm in �GMP��
�� However� there are no good guarantees on the accuracy of such

estimations�

The sample�count approach is somewhat reminiscent of the algorithm in �GM��
 for maintaining

�counting samples�� However� counting samples are used to track the top�k most popular values in a

data set� and not the self�join size� They permit a value to be selected for the sample at most once�

whereas it is crucial for the accuracy of sample�count�s self�join size estimation that the same value

�Sanity bounds stipulate a lower bound on the quantity being estimated� such that estimation errors are analyzed

only for quantities above this lower bound �see� e�g�� �LN�	� LNS�
� GGMS����� presumably the range of interest to

the application making use of the estimate� Since estimating small quantities is often considerably more dicult than

estimating large quantities� the use of sanity bounds may improve the estimation guarantees considerably�
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can be selected for the sample many times� The top�k list attempts to report the top k values and

their frequency� whereas the self�join size reports a single estimator� This allows the latter to apply

averaging and median techniques over multiple intermediate estimators� all within the limited storage�

Outline� The rest of the paper is organized as follows� In Section � we consider the sample�count and

tug�of�war approaches� For each approach� we �rst describe the algorithm as presented in �AMS��
�

and then present our contributions for handling deletions and obtaining good time bounds� We

also present a new lower bound for a standard sampling�based algorithm� Section � presents our

experimental study of the three algorithms for self�join size estimation� Section � presents our new

signature scheme for join size estimation� along with our upper and lower bound analyses� Finally�

concluding remarks appear in Section 	�

� Tracking Self�Join Sizes

In this section we present three algorithms for approximating self�join sizes in limited storage� sample�

count �Section ����� tug�of�war �Section ����� and naive�sampling �Section ����� Let R � �v�� v�� � � � � vn�

be a sequence of n values on which we are to estimate the self�join size� where each vi is a member of

D � f�� �� � � � � tg� The basic idea in both sample�count and tug�of�war is a natural one� In order to
estimate the self�join size� SJ�R�� a random variable is de�ned that can be computed under a given

space constraint� whose expected value is SJ�R�� and whose variance is relatively small� The desired

result is then obtained by considering su ciently many such random variables� partitioning them into

groups� computing the average within each group� and then taking the median of the group averages�

In contrast� naive�sampling selects a random sample of the items in R� computes the self�join size for

the sample� and then scales up the result� so that the expected value of the estimate is SJ�R��

To handle the general tracking scenario� we consider a sequence of operations on a multiset R�

initially empty� where each operation is either

� insert�v�� insert a value v � D into R�

� delete�v�� delete an occurrence of the value v � D from R� or

� query� compute an estimate of the self�join size of R�

��� Algorithm sample�count

Alon et al� �AMS��
 presented the following approach to estimating the self�join size of a sequence R

�insertions only��

�� For i � f�� �� � � � � s�g and j � f�� �� � � � � s�g� compute an independent random variable Xi�j as

follows�

� Choose a random member vp of the sequence R� where the index p is chosen randomly and
uniformly among the numbers �� �� � � � � n� suppose that vp � l � � D��

� Let ri�j � jfq � q � p� vq � lgj � � �� be the number of occurrences of l among the members
of the sequence R following vp �inclusive��

	



www.manaraa.com

� Let Xi�j � n��ri�j � ���

�� For j � f�� � � � � s�g� let Yj be the average of fX��j� X��j� � � � � Xs��jg�

�� Let the estimate Y be the median of fY�� � � � � Ys�g�
The algorithm has two parameters� s� determines the accuracy of the result� and s� determines the

con�dence� Let s � s� � s�� The algorithm uses ��s� memory words� The above description assumes
that n is known in advance� If n is not known� �AMS��
 proposed that after each insertion� each

sample point is replaced by the next point independently with probability �
n�� � where n is the current

length of the sequence�

Note that each time a value v is inserted that occurs k times among the s selected sample points� k

di�erent ri�j are incremented� Thus a straightforward implementation of this algorithm using counters

requires ��k� time to process the insertion� Large k will be expected for highly�skewed data� In the

worst case� all members are the same type� resulting in ��s� time to process each insertion� Moreover�

the straightforward implementation of the process above to handle unknown n requires ��s� time per

insertion� Finally� important algorithmic details are missing� and the approach does not specify how

to handle deletions�

In the remainder of this section� we show how the above de�ciencies can be remedied� by presenting

an algorithm for implementing this approach that both handles deletions and achieves O��� amortized

time per update with high probability�

New results� New update operations �i�e�� insertions and deletions� are expected to occur far more

frequently than new queries� Thus our goal is to minimize update times� while keeping reasonable

query times and preserving the high quality of the estimates� We achieve this goal with our improved

sample�count algorithm� depicted in Figure �� Steps ��	 perform initialization� including selecting the

initial s random positions� Then the main loop� starting with step �� processes the operations� Insert

operations are handled by steps ����� Delete operations are handled by steps ������ Query operations

are handled by steps ������

Various data structures are used to permit fast access to certain properties of the s sample points�

For i � �� � � � � s� Pos�i
 holds the random position selected �step 	�� This means that the i�th sample

point will have the value v of the Pos�i
�th insert� We say that i entered the sample when that insert

is processed� and that subsequently it is in the sample� �As discussed below for deletions� i may be

later removed from the sample�� We say that v occurs in the sample� v is stored in Val�i
 �step ����

If v occurs in the sample� then Sv is the set of all i in the sample that have value v� Otherwise� Sv
is unde�ned� If m has been selected as a sample point position� but fewer than m insertions have

been processed thus far� then Pm is the set of all i that selected position m� �We do not expect

many duplicate selections of the same m� so typically Pm contains only a single i�� Otherwise� Pm is

unde�ned� The de�ned Pm are stored in a look�up table of size ��s�� using m as a look�up key�

To avoid the problem described above of having to increment up to s of the r�counters with each

insert� we use the following approach� For each value v occurring in the sample� we maintain a running

count Nv of the number of occurrences of v �steps �� and ���� We store these Nv in a look�up table

of size ��s�� using v as the look�up key� For each i in the sample� EntryNv�i
 holds the value of Nv

just prior to when i entered the sample �step ���� Then in response to a query� we can compute

the r�counter for sample point i by subtracting EntryNv�i
 from the current Nv �step ���� Note that

�
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Algorithm sample�count

inputs� Sequence of insert� delete� and query operations� Parameters s� and s�� Let s � s� � s��
�� n �� �� m �� � !!size of R and number of inserts
�� initialize empty look�up tables for Nv �on key v�� Sv �on key v�� and Pm �on key m�
�� for all i � f�� �� � � � � sg f
�� select uniformly at random a position p from f�� �� � � � � s log sg
	� Val�i
 �� �� Pos�i
 �� p� add i to Pp

g
�� for each operation in the sequence f
�� if the operation is an insert�v� then f
�� n �� n �� m �� m �
�� if Pm is de�ned then f !! if this position has been selected
��� for all i � Pm f
��� select a random replacement position p !! reservoir sampling� see text
��� Pos�i
 �� p� add i to Pp
��� if Val�i
 �� � then f !! if replacing an existing sample point
��� remove i from SVal�i�
�	� if SVal�i� is now empty then unde�ne SVal�i� and NVal�i�

g
g

��� if Sv is not de�ned then de�ne Sv �� empty and Nv �� �
��� for all i � Pm f Val�i
 �� v� EntryNv�i
 �� Nv� add i to head of Sv g
��� unde�ne Pm

g
��� if Sv is de�ned then Nv �� Nv  � !! if v occurs in the sample

g
��� else if the operation is a delete�v� then f
��� n �� n� �
��� if Sv is de�ned then f !! if v occurs in the sample
��� Nv �� Nv � �
��� let S� be the �possibly empty� subset of Sv with EntryNv�i
 � Nv

�	� for all i � S� f !! a sample point is being deleted
��� Val�i
 �� �� remove i from Sv � if Sv is now empty then unde�ne Sv and Nv

g
g

g
��� else if the operation is a query then f
��� j �� �� Sum �� �� Num �� �
��� for i � f�� � � � � sg f !! compute the averages
��� if Val�i
 �� � then f Sum �� Sum NVal�i� � EntryNv�i
� Num �� Num � g
��� if i mod s� � � then f Yj �� n�� SumNum � ��� j �� j  �� Sum �� �� Num �� � g

g
��� Let the estimate Y be the median of fY�� � � � � Ys�g

g
g

Figure �� The improved sample�count algorithm

�
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because we have only O�s� space� we maintain Nv�s only for v�s occurring in the current sample� Thus

Nv will start accumulating only when v �rst occurs in the sample� and although this �rst sample point

may later be deleted� Nv will continue to accumulate as long as v occurs in the sample�

With the above descriptions� the steps for insertions �ignoring for now steps ����	� are straight�

forward� Likewise� the steps for queries are straightforward� Note that� according to the Alon et

al� approach� the goal is to compute the median of the set of Yj �s� where each Yj �
�
s�

Ps�
i��Xi�j �

n� �s�
Ps�

i�� ri�j � ��� Steps ����� compute these Yj �s� where the only twist is that we ignore i that are
not in the sample� Such i can occur when we have not yet encountered the Pos�i
�th insert� or when

the sample point has been discarded due to a delete operation� Then step �� computes the desired

median�

We now describe how we handle deletions� We will assume that the adversary cannot adapt the

sequence in response to the random choices made by our algorithm� Note that we have de�ned our

tracking problem to be one of maintaining a multiset R under insertions and deletions� and producing

estimates of SJ�R�� This formulation is based on the observation that each sequence member can be

replaced by its value� for the purposes of estimating the self�join� Thus for any delete�v� operation�

we can assume without loss of generality that the member to be deleted is the one with value v that

was the last one to be inserted �and not yet deleted�� Using this assumption� we can represent each

sequence of insertions and deletions by a canonical sequence which consists of insertions only� but

possibly contains nil values� Let "A be a �pre�x� sequence consisting of insertions and deletions� We

obtain its canonical sequence A� by scanning "A from left to right� whenever we see delete�v�� we replace

it with a nil value� and in addition we �nd the nearest member to the left of it with value v and replace

it with a nil value as well� The non�nil values in A� constitute the multi�set of values that remain in

the relation after processing the sequence "A� Let A be the subsequence of A� when the locations with

the nil values are ignored� In this way� we have reduced the scenario with insertions and deletions to

one with insertions only�

Our task then is to have our algorithm process the sequence "A� containing both insertions and

deletions� so that the end result is as if the input had been the insertion�only sequence A� In other

words� the deletion should reverse the most recent undeleted insertion of the same value� Accordingly�

�rst we decrement the running count� n� of the size of R �step ���� If v occurs in the sample� we

decrement Nv �step ���� If the insert�v� to be set to nil is a sample point� then remove it from the

sample� In order to detect this scenario quickly� we maintain Sv as a doubly�linked list� ordered from

the most recent �undeleted� i with value v to enter the sample to the least recent� The heads of

these lists are kept in a look�up table of size ��s�� using v as the look�up key� Any i in Sv with

EntryNv�i
 � Nv is to be removed �steps ������� In this way� we succeed in reversing the most recent

undeleted insert�v��

The end result is as if we have processed A� except that certain sample points were dropped and

may not have been replaced� As long as the number of delete operations in any pre�x of a sequence "A

is at most ��	 of the length of "A� then Cherno� bounds can be used to show that with high probability

the number of remaining sample points after processing the sequence "A is at least s��� As a result�

we obtain accuracy that is provably close to that obtained for insertions only� in which the number of

sample items is guaranteed to be s� Thus� we obtain basically the same estimation quality guarantees

as in �AMS��
� as described in the following theorem�

Theorem ��� Consider Algorithm sample�count run with parameters s� and s� on a sequence 
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of at least s log s insertions �s � s� �s�� ending in a query� where the number of insertions in 
 exceeds

by at least a factor of � the number of deletions in 
� Let R be the multiset resulting after 
� Then

the estimate Y computed by the algorithm satis�es�

Prob

�
jY � SJ�R�j
SJ�R�

� �t
���

p
s�

�
� �� ��s��� �

where t is the size of the value domain� Moreover� Algorithm sample�count can be implemented

such that insert and delete operations are processed in O��� amortized time per operation with high

probability� and each query is answered in O�s� time� The algorithm uses O�s� memory words�

Given their similarity to the estimation guarantees and analysis in �AMS��
� we omit the proof

details for the estimation guarantees of Algorithm sample�count� and focus on the time bounds� In

particular� we now describe the steps to deal with an ever�increasing n� Recall that we need to

maintain the invariant that each i selects a position at random from f�� � � � � ng� After each new
insertion� we would like to replace each sample point by the next point independently with probability
�

n�� � without incurring the ��s� time per insert� For this� we use the following skipping approach

employed in reservoir sampling �Vit�	
� Considering each i as its own reservoir sample of size �� the

skipping approach computes the next random position that would succeed in replacing the current

point� That is� if Pos�i
 � n� then this position is replaced by position n � with probability �
n�� � by

position n  � with probability �� � �
n���

�
n�� � etc� The skipping approach performs a binary search

to �nd the appropriate position� taking O�logn� time with high probability� but then the position

selected is expected to be good for the next n insertions� Thus given that n � s log s� all s instances

of reservoir sampling combined take amortized O��� time with high probability�

We now discuss the reservoir sampling steps in more detail� Pos�i
 holds the selected future position

for i� Initially� this is chosen at random from f�� � � � � s log sg� When the Pos�i
�th insert is processed�
it is time to select the new Pos�i
 �steps �� and ���� This initial application of skipping considers only

positions greater than s log s� subsequent applications consider all positions greater than the current

Pos�i
� Each time a new Pos�i
 becomes the current insert� we need to discard the existing sample

point �steps ����	� before we can add the new sample point �step ���� Note that unlike deletions

resulting from the delete operation� the i to be discarded may occur anywhere in SVal�i�� This is why

we need a doubly�linked list for the Sv�s� Also note that because we are not actually deleting a value

from R� only from the sample� we do not need to modify NVal�i�� To wrap up this time analysis� we

observe that the look�up tables can be implemented as standard hash tables with chaining� resulting

in our claimed O��� amortized time bound with high probability for processing updates�

In order to achieve the O�s� time per query stated in the theorem� we need to retrieve NVal�i� in

step �� without using a table look�up� This can be achieved by representing the list Sv using �next�

and �prev� arrays� and storing the Nv in an array of size s� indexed by the i at the head of Sv � We

walk through this latter array� Each time a valid Nv is encountered� we chase the �next� pointers�

broadcasting Nv to all i in Sv � so that each i can learn the corresponding NVal�i��

Finally� we note that as an alternative to the algorithm and bounds above� we can devise an

algorithm with faster query times� at the cost of slower update times� as follows� The basic idea is to

maintain each Yj during updates� so that queries can be done in O�s�� time� We maintain kv�j � the

number of i in the sample with value v that are relevant to the sum Yj � We store kv�j in a look�up table

using key v� where the j�s for value v are stored as a list at most s� long� On an insert�v�� the mth

�
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insert� we increment kv�d i

s�
e for all i � Sm� Then for all j� add kv�j to Yj � On a delete�v�� reverse these

steps� When we replace i�s sample point during the reservoir sampling� we decrement kVal�i��d i

s�
e and

subtract NVal�i�� EntryNv�i
 from Yd i

s�
e� We also maintain Numj � the number of i in the sample that

are relevant to Yj � Note that Numj �
P

v kv�j � On a query� we divide each Yj by Numj � determine

the median Y �� and let the estimate Y � n��Y � � ��� This results in O�s�� amortized time with

high probability for updates� O�s�� time for queries� O�s� memory words� and the same estimation

guarantees as before�

Note that Algorithm sample�count does not require a priori knowledge about the length of the

sequence� the size of R at query times� or the number of distinct values in R�

��� Algorithm tug�of�war

Alon et al� �AMS��
 presented the following alternative approach to estimating the self�join size of a

sequence R �insertions only��

�� For i � f�� �� � � � � s�g and j � f�� �� � � � � s�g� compute an independent random variable Xi�j as

follows�

� Select at random a ��wise independent mapping v �	 �v � where v � f�� �� � � � � tg and �v �
f��� �g�

� Let Zi�j �
Pt

v�� �vmv � where mv is the number of members with value v�

� Let Xi�j � Z�
i�j �

�� For j � f�� � � � � s�g� let Yj be the average of fX��j� X��j� � � � � Xs��jg�

�� Let the estimate Y be the median of fY�� � � � � Ys�g�

As in sample�count� the algorithm has two parameters� s� determines the accuracy of the result� and

s� determines the con�dence� Let s � s� � s�� The algorithm uses ��s� memory words�
We denote this the tug�of�war approach because each member of the sequence with a value mapping

to � can be viewed as pulling the rope one direction� while each member with a value mapping to

�� can be viewed as pulling the other direction� Note that all members with the same value will be
on the same side of the rope� However� the particular random mapping determines which side of the

rope they are on� Alon et al� showed that the expected square of the di�erence in the sizes of the two

sides is exactly SJ�A�� and that the variance is reasonably small�

A tracking algorithm� The above approach is readily adapted to handle a general sequence of

insertions� deletions� and queries� We initialize each Zi�j to �� We select s hash functions hi�j mapping

from f�� � � � � tg to f��� �g� On an insert�v�� we add hi�j�v� to Zi�j for all i and j� On a delete�v�� we
subtract hi�j�v� from Zi�j for all i and j� On a query� we compute Y as above� Denote this algorithm

as Algorithm tug�of�war� Assuming that the hi�j�v� can be computed in constant time� we have�

Theorem ��� Consider Algorithm tug�of�war run with parameters s� and s� on a sequence 


ending in a query� Let R be the multiset resulting after 
� Let s � s� � s�� Then the estimate Y

��
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computed by the algorithm satis�es�

Prob

�
jY � SJ�R�j
SJ�R�

� �p
s�

�
� �� ��s��� �

Moreover� insert� delete� and query operations each take O�s� time� and the algorithm uses O�s�

memory words�

The estimation guarantees follow directly from the analysis in �AMS��
� The time and space

bounds are immediate� Note that this algorithm does not require a priori knowledge about the length

of the sequence� the size of R at query times� or the number of distinct values in R�

��� Algorithm naive�sampling

We contrast Algorithm sample�count and Algorithm tug�of�war with the following standard sampling

approach �not considered in �AMS��
�� denoted below as Algorithm naive�sampling� We consider the

simple scenario of a sequence A with only insertions� where the number of insertions� n� is known� The

algorithm samples s elements �without replacement� from the sequence� and computes the self�join

size� SJ�S�� of the sample set S� by �rst computing a simple histogram of at most s buckets on the

values that occur in the sample set� and then summing the squares of the bucket counts� We then

scale SJ�S� into an estimator X whose expected value is SJ�A��

X � n
�SJ�S�� s�n�n� ��

s�s� �� �

We have the following lower bound on the sample size required to provide a good quality estimate

of the self�join size� even in this simpli�ed scenario�

Lemma ��� Algorithm naive�sampling requires a sample of size ��
p
n� to estimate the self�join

size to within less than a factor of � with high probability�

Proof� Let R� contain n items of di�erent values� Let R� contain n�� pairs of items such that

each pair contains items with the same value� Members of di�erent pairs have di�erent values� A

random sample of R� will contain all distinct values� and hence the estimator of the self�join size

for R� will be n� A random sample of R� of size o�
p
n� will� with a sizeable probability p� also

contain all distinct values� the estimator for R� will also be n on such a sample� On the other hand�

SJ�R�� � � � SJ�R�� � �n� so the estimator will be a factor of � o� with probability at least p�

��� Analytical comparison of the algorithms

In both Algorithm sample�count and Algorithm tug�of�war� a single random variable is expected to

provide the right estimate� However� in order to guarantee from Theorem ��� that for any input

set� Algorithm sample�count produces an accurate estimate with high probability� we need to have a

sample of size ��
p
t�� This improves upon the ��

p
n� lower bound for Algorithm naive�sampling� when

t
 n� On the other hand� we see from Theorem ��� that only O��� tug�of�wars su ce for an accurate

estimate with high probability� Thus in theory� Algorithm sample�count is inferior to Algorithm

tug�of�war in both its space requirement and its simplicity of implementation� However� recall that

��
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Table �� Data sets and their characteristics

data set length domain size self�join size type �gure

zipf��� 	��� ��� �� ��� ����e �� statistical �

zipf��	 ���� ��� �� ��� ��	�e �� statistical ���	

uniform �� ���� ��� ��� ��� ���	e �� statistical �

mf� ��� ��� �� ��� ����e �� statistical 	

mf� ��� ��� �� ��� ����e �	 statistical �

selfsimilar ���� ��� ��� ����e �� statistical �

poisson ���� ��� �� ����e �� statistical �

wuther ���� �	� ��� 	�� ����e �� text �

genesis ��� ��� �� ��� ����e �� text ��

brown� �		� ��� ��� �	� 	���e �� text ��

xout� ���� ��� ��� ��� ����e �� geometric ��

yout� ���� ��� ��� ��� ����e �� geometric ��

path ��� ��� ��� ��� ����e �	 arti�cial ��

Algorithm tug�of�war is somewhat more demanding in its update time� which is proportional to the

sample size� More importantly perhaps� the estimation guarantees in Theorems ��� and ��� apply in

general to any input� This leaves open the question as to which of the methods would demonstrate

better performance in actual use� The experimental study in the next section provides the �rst step

towards answering this question�

� An Experimental Study

In this section� we present the results of our experimental study of the three algorithms described in

Section �� We implemented the sample�count� tug�of�war and naive�sampling algorithms� and tested

their accuracy on various real�world and synthetic data sequences�

Data sets� Table � presents the data sets we studied� and summarizes their properties� The �rst

seven data sets are synthetic data sets comprised of data values drawn from di�erent statistical dis�

tributions� The �rst two are from a Zip�an distribution with parameters ��� and ��	� where the

larger parameter implies more skew� The next is from a uniform distribution� followed by two from

multifractal distributions� with larger and smaller skew� The last two statistical data sets are from

a self�similar distribution and from a Poisson distribution� The next �ve data sets in the table are

real�world data sets� We study three that are text excerpts from well�known literary works such as

Wuthering Heights and Genesis� and two that are coordinates taken from a spatial data set� Finally�

we have an arti�cial data set designed to favor tug�of�war over sample�count�

For each data set� Table � lists its length �n�� its domain size �t�� the actual self�join size� its type

�as indicated above�� and which �gure depicts results for this data set� Note that these data sets

span a factor of 	� in lengths� three orders of magnitude in domain sizes� and nearly four orders of

magnitude in self�join sizes�

��
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Figure �� Zipf����� distribution Figure �� Zipf����� distribution

Plots� The accuracy for the three algorithms was measured for sample sizes ranging from � to ��� ����

by powers of �� The results are shown in Figures ����� In each plot� the x�axis is labeled with the base

two logarithm of the sample size� The y�axis is labeled with the ratio of the estimated size to the actual

size of the self�join� i�e�� the estimate normalized by the actual� The actual join size is shown as a

horizontal line at y � �� For each sample size� we plot the normalized estimate produced by Algorithm

sample�count� Algorithm tug�of�war� and Algorithm naive�sampling� For all three algorithms� by the

law of large numbers� the normalized estimate must tend to � as the sample size grows� since the

expectation of each estimator equals the self�join size� Each plotted point corresponds to one run of

an algorithm� this seemed appropriate because each estimator is already based on the aggregation of

many independent experiments�

��� Summary of the results

Figure � depicts a common case� Algorithm tug�of�war converges to the actual self�join size at a faster

rate than Algorithm sample�count� which converges at a faster rate than Algorithm naive�sampling�

As a simple means of quantifying convergence towards a reasonable approximation� we will consider

the metric of the minimum sample size each algorithm needed to be within �	� relative error for this

and all larger sample sizes� For the Zipf����� data set� tug�of�war needed a sample size of only �� � ���

sample�count needed �� � ���� but naive�sampling needed ��� � �����

On the other hand� when we consider a more skewed Zip�an data set �Figure ��� both sample�count

and naive�sampling improve� whereas tug�of�war does not improve� The result is that sample�count

is roughly comparable to tug�of�war� and both are far better than naive�sampling� By our metric�

sample�count needed sample size ��� tug�of�war needed ��� and naive�sampling needed 	���

Interestingly� when we consider a uniform distribution �Figure ��� which has no inherent skew�

sample�count does much better than tug�of�war� which is better than naive�sampling� sample size ��

vs� �	� vs� ����� respectively� for our metric� In both the no�skew and the high�skew cases� sample�

count does well because both types of distributions are well�represented by the counts for a few

randomly selected positions�

In comparing the higher skew and lower skew multi�fractal data sets �Figures 	 and �� respectively��

we see that both tug�of�war and sample�count are comparable� but naive�sampling does considerably

��
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Figure �� Multi�fractal������� ��	� ��� distribution Figure �� Self�similar distribution

worse on the lower skew data set� In fact� it has yet to converge within �	� even with a sample size

of ��� ���� which is over ��� of the size of the entire data set�

The next two data sets compare the algorithms on very small domain sizes� Algorithm naive�

sampling is far worse than the other two for the self�similar distribution �Figure ��� but is comparable

on the Poisson distribution �Figure ��� where all techniques do quite well when the sample size is at

least �	��

Figures � and �� show results for text excerpts� Text is often well�modeled by a Zipf����� distri�

bution� so it is not surprising that the results are similar to that for the Zipf����� data set �Figure ���

Likewise� results for words from the Brown corpus are similar �Figure ���� although sample�count is

somewhat less reliable than with the other text excerpts�

Finally� the spatial data sets show similar results �Figures �� and ���� The common relative order

of the three algorithms holds� although sample�count does almost as bad as naive�sampling for these

two data sets�

In summary� sample�count and tug�of�war are always clear winners� although in rare cases naive�

sampling performs almost as well as either sample�count or tug�of�war� Both sample�count and tug�

of�war perform well even with a very modest number of sample points relative to the data set sizes�

reliably estimating self�join sizes of both synthetic and real�world data sets� In around half of the plots�
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Figure ��� A pathological example Figure �	� Robustness of estimators Xij

the tug�of�war algorithm converges noticeably faster than the sample�count algorithm� For most of

the remaining plots� the di�erence between the two is modest� The most dramatic case in which

sample�count produces better estimates than tug�of�war is for the Uniform distribution�

Our results show that tug�of�war needed only ���	� memory words� depending on the data set�

in order to estimate the self�join size to within a �	� relative error� on average� this is over � times

smaller sample size than needed by sample�count� and over 	� times smaller sample size than needed

by naive�sampling�

��� Separating tug�of�war and sample�count

The relative closeness of sample�count and tug�of�war on the above data sets contrasts with the large

gap in the asymptotic bounds on sample size� Recall that in order to guarantee from Theorem ���

that for any input set� Algorithm sample�count produces an accurate estimate with high probability�

a ��
p
t� sample size is needed� In contrast� Theorem ��� reveals that only O��� memory words are

needed for Algorithm tug�of�war to produce an accurate estimate with high probability for any input

set� In order to verify that this worst case gap can occur �and is not simply an artifact of the upper

bound analysis�� we construct a pathological data set for which sample�count converges particularly

slowly� in contrast to tug�of�war� In the �path� data set� ����� values occur exactly once� and one

value occurs ��� times� The estimates for this pathological data set are displayed in Figure ��� and

indeed the performance closely matches the theoretical prediction�

��� Robustness of tug�of�war estimates

Another approach to measuring the reliability of the tug�of�war estimator is to consider the distribution

of the individual estimatorsXij �� In Figure �	� we plot ��� individual estimators for the zipf��	 data set

in Table �� The estimators have been sorted in increasing order� The value of the estimator is plotted

as a function of the estimator number� The actual self�join size is depicted by a dashed horizontal line

segment extending from the y�axis� Note that the median individual estimator is slightly below the

�Recall that the overall estimator is obtained by computing averages of groups of these individual estimators� and

then taking the median of the group averages� Thus we expect these individual estimators to have much larger variance

than our overall estimator�

��
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actual self�join size� but that many of the overestimates incur a larger absolute error than the worst of

the underestimates� The most telling observation is the lack of clustering around the actual self�join

size� the estimators are fairly equally spread across the range� This indicates why taking averages� or

medians of averages� of the individual estimators Xi�j is so essential to getting high�quality estimates�

� Signature Schemes for Join Size Estimation

In this section� we study signature schemes for join size estimation� The goal is to maintain a small

signature for each relation independently such that at any point we can estimate the join size of any

two relations� In the traditional approach of join size estimation without the bene�t of precomputed

signatures� it is well�known that join size estimation is ine�ective when the join size to be estimated is

small� Thus previous work on estimating join sizes has advocated the use of �sanity bounds� �LN�	�

LNS��
� the goal is to develop procedures that provide an accurate estimate whenever the join size

is at least B and otherwise report that the join size is less than B� and to minimize the B� �Typical

values for B are n��� or n logn�� Sanity bounds are appropriate for join size estimation� there is a

strong motivation to estimate the join size accurately only when the join size is large� since in such

cases the resources that would be consumed to perform the join are large�

We consider join size estimation in the presence of an a priori sanity �lower� bound on the join

size and present the �rst results showing that the simple random sampling approach has essentially

the best estimation guarantees �worst case guarantees� over all possible relations� among all possible

signature schemes� Since the estimation guarantees are not satisfactory� we propose a more re�ned

analysis that takes into account the self�join sizes of the participating relations� We assume now two

bounds� a lower bound on the join size and an upper bound on the self�join size� We present a signature

scheme that gives provably better join size estimation for many settings of these two parameters� This

algorithm is based on the tug�of�war approach outlined in Section ����

��� Analysis of random samples as signatures

First we study the simple signature scheme of randomly selecting each tuple from a relation with

probability p� and storing the value of the joining attribute for that tuple as the signature for the

relation� To estimate the join size of two relations F and G� we compute the size of the join of their

signatures and scale the result by p��� �This procedure is called t cross in �HNSS��
��

We can view the tuples in F and G as nodes in the two sides of a bipartite graph # � �#V �#E��

There is an edge between a node f � F and a node g � G if and only if tuples f and g have the same

value on the joining attribute� Then j#E j � jF �� Gj� the join size of F and G� The join size of their
samples is the number of edges spanned in # by the nodes in the samples�

Lemma ��� Let # be any graph on n nodes� Assume we select nodes of # randomly� each with

probability p � �
n � Let X denote the random variable whose value is the number of edges that are

spanned by the nodes in the sample� Then E�X� � j#E jp� and Var�X� � j#E jp� Pn
i�� d

�
i p

�� where

di is the degree of node i in #�

Since
Pn

i�� d
�
i � n

Pn
i�� di � �nj#E j� we can bound Var�X� in Lemma ��� by �nj#E jp�� Note that

if E�X�� � �Var�X� for a constant � � �� we can apply the Chebychev inequality to obtain a �small�

��
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constant factor error with �high� constant probability� Var�X� � E�X���� if �j#E jnp� � j#E j�p����
i�e�� p � ��n�j#E j� This shows that a sample of expected size np � ��n��jF �� Gj is su ciently large�
We conclude�

Lemma ��� Suppose we have an a priori lower bound B on the join size� The simple sampling

signature scheme estimates the join size with constant relative error with high probability if the random

sample has size at least cn��B� for a constant c � � determined by the desired accuracy and con�dence�

Note that random samples of each relation can be maintained incrementally with small overheads

as new data is inserted or deleted into the relation �Vit�	� GMP��
� and hence one can track join sizes

in O�n��B� memory words using this approach�

��� Lower bounds on signature schemes for join size estimation

We prove that� to within constant factors on the signature size� the simple sampling algorithm in the

previous subsection cannot be improved �measured by worst case analysis� given no further assump�

tions� The lower bound applies to all possible signature schemes� including static signatures that may

or may not have e cient incremental maintenance�

We say an estimate is �good with high probability� if it is within a �� relative error with ���

probability�

Theorem ��� Let $ be any scheme which assigns bit strings to database relations� so that there is

a random or deterministic pairing function D such that given two relations F and G of size n the

formula D�$�F ��$�G�� gives a good estimate on the join size of F and G with high probability� when

an a priori lower bound B� n � B � n���� is given on the join size� Then the length of the bit string

that $ assigns to relations of size n must be at least �n�
p
B���B�

Proof� Let m � n �
p
B� De�ne t � ��m��B and �x a set T of t possible values for the joining

attribute� denoted types� Let D� be the uniform probability distribution on uni�type relations over T �

namely� with probability ��t we select the relation comprising m tuples of type i� where � � i � t�

We de�ne another distribution D� in the following way� Let S be a family of subsets of f�� �� � � � � tg
such that� ��� All sets in S have size m��B � t���� ��� jSj � �m��B � �t��	� ��� For all S�� S� � S�
S� �� S�� we have jS� � S�j � m���B � t���� One can show the existence of such a set system using

the probabilistic method� For each S � S� we de�ne a relation S� of size m comprising B�m tuples of
each type in S� Let S� be the set of relations so de�ned� We de�ne D� to be the uniform distribution

on relations in S��
To ensure that all join sizes are at least B� we augment each relation in D� and D� to also havep

B tuples of type �� Thus the total size of each relation is n�

Let F be a relation randomly chosen from D� and let G be a relation randomly chosen from D��

The join size of F and G is either B or B  m�B�m� � �B� Applying Yao�s standard technique�

it su ces to show that any deterministic scheme that assigns strings of length at most �m��B� � �
fails to estimate the join size with small error with probability bounded away from � for a random

pair F � D�� G � D�� Consider partitioning the relations into classes according to the bit string

assigned them by $� For each relation in D�� the pairing function gives the same estimate for all

relations in D� in the same class� However� for each class� there can be at most one relation in D�

��
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for which the estimate has less than 	�� error for more than �	� of the relations in D�� To see

this� consider S�� S� � S such that the corresponding relations in D� map to the same class� and let

T � � ft � �S�� S��� �S�� S��g� For each D� whose type is in T
�� the join size is B for one of S� and

S� and �B for the other� thus any estimate will have at least 	�� error for at least one of them� By

the properties of S� we have jT �j � ��t���� t���� � t���� and hence for one of them� the estimate will

have at least 	�� error for more than t��� � 	� of the relations in D�� Since the number of distinct

bit strings is at most �m
��B��� we get that for a constant fraction of the pairs F � D�� G � D� the

scheme fails to estimate the join size with small error�

Thus if B is o�n��� then the bit strings must be at least n����o����B long� Comparing Lemma ���

and Theorem ���� we have that �i� the sampling signature scheme with an expected ��n��B� values

stored is good with high probability� and �ii� no signature scheme is good with high probability unless

it has ��n��B� bits stored�

This lower bound implies estimation guarantees that are not satisfactory in many cases� Thus in

the next subsection� we propose a more re�ned analysis that takes into account the self�join sizes of

the participating relations� We assume now two bounds� a lower bound on the join size and an upper

bound on the self�join size� and ask if in this case� can one do better than random sampling% We show

that indeed one can do better by presenting a signature scheme that gives provably better join size

estimation for many settings of these two parameters�

��� The tug�of�war join signature scheme

Recall that our goal is to maintain a small signature for each relation independently such that at any

point we can estimate the join size of any two relations� Our new signature scheme is based on tug�

of�war signatures� and provides guarantees on join size estimation as a function of the self�join sizes of

the joining relations� Speci�cally� the scheme gives an estimator for the join size of any two relations

F and G whose error is �with high probability� at most
p
� � SJ�F � � SJ�G�� where SJ�F � and SJ�G�

are the self�join sizes of F and G� The signature that enables this estimator for any two relations is

only O��� memory words per relation� Using this signature as a building block� we construct a larger

signature of k memory words comprising k independent signatures per relation� An estimator based

on taking the arithmetic mean of the k individual estimators reduces the error by a factor of
p
k�

Let D � f�� �� � � � � tg be the domain of the joining attribute� Let F and G be two relations of n
tuples each� For i � �� � � � � t� let fi and gi be the number of tuples in F and G whose joining attribute

value is i� The join size jF �� Gj �Pt
i�� fi � gi�

Let f�igti�� be four�wise independent f��� �g�valued random variables� For F and G we create the
signatures S�F � �

Pn
i�� �ifi and S�G� �

Pn
i�� �igi� respectively�

The estimator for jF �� Gj is simply S�F � � S�G��

Lemma ��� Let S�F � and S�G� be tug�of�war join signatures for relations F and G� Then

E�S�F � � S�G�� � jF �� Gj ���

Var�S�F � � S�G�� � � � SJ�F � � SJ�G�� ���

where SJ�F � and SJ�G� are the self�join sizes of F and G�

��
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Proof�

E�S�F � � S�G�� � E�
tX

i��

��i figi 
X

��i��j�t

�i�jfigj�

�
tX

i��

figi � jF �� Gj�

since E��i�j� � � for � � i �� j � t� To prove Equation ��� de�ne

X � S�F � � S�G�� E�S�F � � S�G�� �
X

��i ��j�t

�i�jfigj �

Since E�X�� � Var�S�F � � S�G��� we have�

Var�S�F � � S�G�� �
X

��i��j�t

f�i g
�
j 

X
��i��j�t
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�
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i �
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�
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and Equation ���� we conclude that

Var�S�F � � S�G�� � �

�
� X
��i�t

f�i
X

��j�t

g�j �
X

��i�t

f�i g
�
i

�
A

� � � SJ�F � � SJ�G��

Note that the tug�of�war signature scheme described in this section is a better join size estima�

tor than the random sample estimator� because already it is a better estimator for the self�join �as

demonstrated earlier in this paper � see Lemma �����

The estimation guarantees of the tug�of�war signature scheme can be enhanced by repeating the

basic scheme k � � times and taking the arithmetic mean of the results� We denote this scheme by

k�TW� The signature size of the k�TW is k memory words per relation�

Theorem ��� Let F and G be two relations such that jF �� Gj � B�� SJ�F � � B�� and SJ�G� � B��

Then the k�TW estimator with

k �
c � SJ�F � � SJ�G�

B�
�

� cB�
�

B�
�

estimates jF �� Gj within constant relative error with high probability� for a constant c � � determined

by the desired accuracy and con�dence�

��
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Proof� By Lemma ���� the variance of the ��TW estimator is upper bounded by � �SJ�F � �SJ�G� �
�B�

� � Since the k�TW estimator is the arithmetic mean of k independent ��TW estimator� we can

upper bound its variance by � � SJ�F � � SJ�G��k � �B�
��k� We also have a B

�
� lower bound on the

square of the expectation� The theorem follows from the Chebychev inequality�

Note that for each ��TW� the f�igti�� can be determined by selecting at random from a family of
��wise independent hash functions� Thus for k�TW� we select independently at random k such hash

functions� Let Zi be the signature for the ith hash function hi� For each insertion into the relation of

a new tuple with joining attribute value x� for i � �� � � � � k� we add hi�x� �� � or ��� to Zi� for each
deletion from the relation of an existing tuple with joining attribute value x� we subtract hi�x� from

Zi� Thus we can use k�TW signatures to track join sizes in limited storage �namely k memory words

per relation��

Note that k�TW does not require a priori knowledge about the length of the sequence� the size of

either relation at query times� or the number of distinct values in either relation�

A remark on signatures for a priori join pairs� We have considered in this paper the set�up

in which the signature for an individual relation F is computed in isolation and must provide good

quality estimates for jF �� Gj for any other relation G� This rules out adapting approaches used in

traditional join size estimation that supplement sampling in one relation with indexed lookups of the

number of tuples with a joining attribute value in the other relation� such as the adaptive sampling

of �LN�	
 and the bifocal sampling of �GGMS��
 �procedures with indexed lookups are called t index

in �HNSS��
�� An alternative scenario to consider is to be given a set of join pairs and compute a

signature for each pair� and to incrementally maintain these signatures� The practical problem then is

that the size of the signatures and the work for incremental maintenance may scale with the number

of pairs� For example� the construction in the lower bound of Theorem ��� shows that large signatures

are required to obtain good estimates with high probability� even when restricting the set of joins to

be relations from D� joining with relations from D��

��� Analytical Comparison of the Two Algorithms

In this subsection� we analytically compare the memory words needed by the random sampling ap�

proach and by the tug�of�war approach� in order to achieve constant relative error with high probability�

By Lemma ���� we have that the random sampling approach uses ��n
�

B � memory words� where n is the

size of each relation� and B is the sanity bound� n � B � n�

� � By Theorem ��	� we have that k�TW

uses O�C
�

B� � memory words� where C is an upper bound on the size of the self�join for both relations�

Ignoring constants� it follows that k�TW improves upon the sampling approach when C�

B� 	 n�

B � i�e��

when C 	 n
p
B�

It is interesting to note that the self�join sizes for many of the data sets in Table � are indeed

smaller than n
p
B for modest B� For the uniform� mf�� and path data sets� k�TW is better even for

B � n� and the advantage is about ����� ��� and �	�� resp� For others� in order for k�TW to have an

advantage� B needs to be larger than n by roughly a factor of ���� for selfsimilar� ���� for zipf��	�

	�� for poisson� �	� for zipf���� 	� for brown�� and ���� for mf�� wuther� genesis� xout�� and yout��

In short� for very uniform situations� k�TW has a signi�cant advantage because C is small� For

highly�skewed distributions� C is rather high� so k�TW is expensive unless B is su ciently large

��
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compared to n �a factor of ����� where n is about ��������� For text data sets� the situation is

intermediate �modest skew�� and k�TW works better for moderately small B and above�

� Conclusions

This paper has considered the problem of tracking �approximate� join and self�join sizes in limited

storage in the presence of insertions and deletions to the relations� The goal is to maintain a small

synopsis of the data in each relation� kept up�to�date as the data changes� in order to provide a high

quality estimate of a join or self�join size� on demand at any time�

For self�joins� we discuss three algorithms� sample�count� tug�of�war� and naive�sampling� focusing

on extensions to handle deletions and on experimental evaluation� Extending the results in �AMS��
�

we present analytical bounds demonstrating that� for the same size synopsis� tug�of�war is more accu�

rate than sample�count which is more accurate than naive�sampling� Our experimental results on a

variety of synthetic and real�world data sets support this relative ordering in accuracy� although the

gap between tug�of�war and sample�count is often small� and indeed� sometimes sample�count is more

accurate� The naive�sampling algorithm� on the other hand� does considerably worse than the other

two�

For joins� our goal is to maintain a small synopsis �a join signature� of each relation such that

join sizes can be accurately estimated between any pairs of relations� We show that taking uniform

random samples for join signatures can lead to inaccurate estimation unless the sample size is quite

large� namely ��n��B�� where n is the size of each relation and B is an a priori sanity lower bound

on the join size �n � B � n�

� �� Moreover� we prove a lower bound that shows that no signature

scheme can provide good estimation guarantees unless it stores ��n��B� bits� Thus no other scheme

can signi�cantly improve upon random sampling without further assumptions� Finally� we present a

signature scheme based on tug�of�war signatures that provides guarantees on join size estimation as

a function of the self�join sizes of the joining relations� This scheme can signi�cantly improve upon

the sampling scheme across a range of self�join sizes whenever the self�join sizes are smaller than

n
p
B� Moreover� the join signature for a relation can be maintained incrementally in the presence of

insertions and deletions to the relation�

A possible concern for tracking algorithms is the cost they occur at the time the data is updated�

In a typical �o&ine� data warehouse scenario� data loading occurs in batch mode� in between batches

of queries� the tracking algorithms described in this paper are well�suited for such scenarios� On the

other hand� in scenarios where data updates occur intermixed with queries� tracking algorithms must

have very low overhead in order to avoid creating a concurrency bottleneck� Even constant time per

update may be too slow� An alternative is periodically run the tracking algorithm in batch mode� by

stepping through any additions to the update log since the previous run� In such cases� the accuracy

guarantees must be weakened accordingly to account for updates not yet processed by the tracking

algorithm�

Future work includes performing an experimental study of the tug�of�war join signature scheme

ro complement our analytical comparison� and extending the work to more general scenarios such as

three�way joins�

��
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